If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+4.8y=0
a = 5; b = 4.8; c = 0;
Δ = b2-4ac
Δ = 4.82-4·5·0
Δ = 23.04
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4.8)-\sqrt{23.04}}{2*5}=\frac{-4.8-\sqrt{23.04}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4.8)+\sqrt{23.04}}{2*5}=\frac{-4.8+\sqrt{23.04}}{10} $
| h-7=2.3 | | 2+n=15-7/8n | | 4-10-x+3x=12 | | 30+4y=9 | | 11=v/3+7 | | 11x-4+3x+1+5x-7=180 | | (x+7)-8=15 | | j/3+16=18 | | 20x+2x=100 | | 4x-15=-2-x-3 | | 10x+14=12x+8 | | y-59=244 | | $244-y=$59 | | 11v-6v=40 | | 0.2x-1=-1A) x=0 B) x=1 C) x=-10 D) x=0.2 | | 2x-3(-21/3)=7 | | n/8=20/32 | | X+2y=199 | | 3+4x=-10x-5 | | 16−2q=10 | | x92=3x | | x=2x-84 | | Y=-5.3x^2+3.6x+2 | | 135+2x=x | | -5(v+4)=5 | | 16-2n=-8=4(n-3) | | 16+4x=5x+5 | | 17x+7+8x-2=180 | | 11.5-3x=48.5 | | 6r+4=28 | | 10=w/3+8 | | -6(-2m-7)+8m=-118 |